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1 Introduction

Codex is a machine learning model of natural and programming languages to
which OpenAI provides limited third-party access.1 Github Copilot is a com-
mercial product that is built on Codex.2 In this paper, we describe some scien-
tific concerns with Codex/Copilot that dovetail with its widely discussed ethical
and legal problems. Our focus is on the scientific problems that attend Codex,
with consequent weaknesses for the Copilot commercial service. In our view,
ethical and scientific weaknesses are closely tied, and we describe this with a
few instances.

The argument of the paper is as follows: GPT-3, the natural language model
on which Codex is built, and that services such as Copilot ultimately depend
on, suffers from scientific deficiencies. First we present critical remarks on Copi-
lot’s structure and underlying language model. We then present paths forward
for these, identifying specific architectural features that prevent GPT-3 from
competing with recent advances due to freely distributed and licensed research
software.

2 Scientific concerns with Codex/GPT-3

In this section we summarize the unstable scientific state of affairs into which
Codex and its parent language model, GPT-3 [1] falls. We argue that these tech-
nologies suffer from the usual deficiencies of closed science. In the next section
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we argue that, conversely, those parts of computational linguistics and artifi-
cial intelligence that continue to hew closer to the values of the Free Software
Foundation are succeeding at improving the speed and quality of the science of
natural language models.

2.1 Black-boxes & paired programming

As is the case with many deep learning models, Codex (based on its parent
model, GPT-3) can be described as a black-box model, to wit, a model that
“takes a sequence of query inputs, and returns corresponding outputs, while
keeping internal states such as model architecture hidden” [2]. Despite its im-
pressive performance on a number of natural language processing tasks, ranging
from news article generation, arithmetic, and story generation, there exists to
date no reliable means to understand or interpret the rationale behind its pre-
diction decisions.

Advances in deep learning have led to the widespread belief that perfor-
mance comes at the cost of interpretability. On the other hand, numerous re-
sults in a variety of different machine learning applications have been emerging
that demonstrate the very contrary. For example, the emergence of non-linear
models with interpretability constraints (i.e., glass-box or white-box models)
[3, 4, 5, 6] have been shown to perform just as well as unconstrained models,
which may mask a multitude of possible serious mistakes [6]. In the criminal
justice system, it has been repeatedly demonstrated that black box models for
predicting future crime are not any more accurate than simple and interpretable
predictive models based on age and criminal history [7, 8]. This result has also
been shown to hold in computer vision where deep neural networks constrained
for interpretability lead to more transparent computations without doing so at
the expense of accuracy (e.g., [9, 10, 11]). The unveiling of such results has
led to the proposal of a landmark competition in AI, called the Explainable
Machine Learning Challenge3.

For domains that are potentially lower stake (e.g., machine translation, topic
classification, question answering), the prospect of a simple model explaining its
prediction may understandably be overshadowed by a stronger, black-box model
that boasts superior prediction accuracy. However, towards high-stakes machine
learning application domains where interpretability should be regarded as an
inseparable component of the output (e.g., healthcare, financial systems, and
criminal justice systems) this compromise simply cannot be afforded. Similarly,
in the case of “paired programming” to which GitHub openly imputes Copilot,
the importance of interpretability is self-evident.

Paired programming is an activity in which, typically, two human program-
mers cooperate in solving a programming task. The purpose of a competent
paired programmer is to help their partner programmer identify hidden prob-
lems, question their assumptions, and inform them about alternate and possibly
more efficient solutions. Copilot, for now, fails to contribute in this way and,

3https://community.fico.com/s/explainable-machine-learning-challenge
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quite the contrary, abides blindly by the assumptions of the programmer and
directs all its resources towards producing continuations (and may do so by re-
gurgitating chunks from the training data [12]) based on the immediate context
of what has been so-far typed by the programmer.

The coupling of these two realities – the first, of the countless results in
the literature challenging the belief that accuracy should not be compromised
for interpretability, as well as the second, that many domains, such as that
of paired programming, require that the system be as interpretable as it is
competent, implies that the purport of Copilot’s success it not just inaccurate,
but potentially harmful to the greater good. It has facilitated the marketing and
selling of proprietary, complex, and too-large-to-recreate black box models for
high-stakes decisions when otherwise simple, tractable and interpretable models
exist for the same tasks. As such, it allows the model creators to profit without
considering harmful consequences to the affected individuals. One may even
wonder if it isn’t the very complicated architecture and massive size of these
models that helps suppress the possibility for criticism in the first place.

2.2 A lack of common sense

Machine learning models of speech, language and translation have piqued the in-
terest of both researchers and industries alike through their success on a variety
of benchmarks (e.g., [13, 14, 15]). However, natural language models exhibit a
number of deficiencies, including brittleness, lack of generalizability, and the in-
ability to model compositionality; these have have long plagued neural networks
for other domains also [16, 17, 18]. Compositionality is a feature of represen-
tations that supports behaviors that are systematically related to one another.
For example, consider commutativity for addition and subtraction. A machine
learning model of arithmetic that was able to correctly compute 5 + 3 but not
3 + 5 would appear to lack compositional representations.

Of particular concern lately is that such models seem to lack common sense,
which, by virtue of being shared and “common”, is rarely stated explicitly in
the training corpora and therefore poses a distinct challenge for data-hungry
approaches. Without common sense, systems’ output, for example, in language
modelling, can seem glaringly unintelligent at deployment [19].

The problem of common sense is no less pervasive in the task of code com-
pletion for which Codex claims expertise. For example, in a recent critical
discussion4 on Copilot, generated code from the model, given a docstring in-
put asking for the optional compression of a file, in fact always compressed the
file. This inability to capture the effects of modifiers on the meaning of a sen-
tence corroborates recent findings [20]. Additionally, in the original paper for
Codex, authors concede that the model has a tendency to recommend syntac-
tically incorrect or undefined code, and struggles to parse through increasingly
long and higher-level or system-level specifications [21]. The question, therefore,
is why, despite these concerning demonstrations, Co-pilot’s strengths seem to

4https://www.fast.ai/2021/07/19/copilot/
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preponderate its flaws.
The very fact that Codex can generate reasonably appearing code for a given

problem with a non-zero chance of passing a unit test is nonetheless impressive.
At the same time, the manner in which the positive results are reported warrants
deeper investigation, if not for ethical reasons, then purely on a scientific basis.
The pass@k metric employed by Codex’s authors corresponds to the probability
that a single sample of code among k pools generated would pass a single unit
test.

After having fine-tuned the sampling parameter of temperature, pass@1 of
Codex is reported at roughly 28%. Whether or not success with respect to a
single, arbitrary unit test, and under the regime of parameter tuning should
be interpreted beyond this specific scope is surely a matter of discretion. In
fact, many results showcased by the developers have been admitted to requiring
careful “priming” [21]. This limitation is only compounded by the fact that the
model is black-box, making the grasp of why certain priming works while other
approaches fail as challenging as interpreting the output in the first place.

Codex is both architecturally similar to the natural language model GPT-3
and trained on a pre-existing GPT-3 model already trained on very large crawls
of the open web and other text databases. The authors explain that “Sur-
prisingly, we did not observe improvements when starting from a pre-trained
language model, possibly because the fine-tuning dataset is so large. Never-
theless, models fine-tuned from GPT converge more quickly, so we apply this
strategy for all subsequent experiments.”[21]

2.3 Methods for assessing common sense

It is important to acknowledge that the work being done at OpenAI is truly in-
novative. Even 10 years before the first GPT model was presented the scientific
community struggled to build systems that leveraged the vast quantities of unla-
beled text available freely on the web to produce better machine representations
for use in natural language tasks [22].

The first GPT paper is focused on fine-tuning: after the model is trained
on improving its ability to predict next tokens in natural language corpora,
it is given a task-specific output layer and trained on some ‘downstream task’
(e.g., a benchmark) [23]. Despite demonstrating significant progress in fine-
tuned performance on these tasks, in the ‘Analysis’ section, the authors explain
the importance of measuring ‘zero-shot behaviours’: accuracy of the language
model on tasks that it was not trained to solve, but can solve as a result of its
predictive optimization on next tokens.

They say “We’d like to better understand why language model pre-training of
transformers is effective. A hypothesis is that the underlying generative model
learns to perform many of the tasks we evaluate on in order to improve its
language modeling capability and that the more structured attentional memory
of the transformer assists in transfer compared to LSTMs” [23]. In Section 3 we
compare results with an approach that differs significantly in both architecture
and methodology and show improvement with less training and smaller model
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sizes. In particular, we question whether fine-tuning is an effective method
for measuring common sense knowledge in a language model, and suggest an
alternative.

In the previously mentioned critique of the science behind Copilot, coming
from a pioneer of the modern successes in machine learning for image recogni-
tion5, the author helped to originate the major step forward for natural language
processing (MLP) of fine-tuning a pre-trained language model. That author ar-
gues that Copilot is a “buggy mess”, and that progress will emerge from its
competitors. Part of our task here is to argue that the best alternatives will
likely emerge from free software.

Fine-tuning as a metric for language model performance has come under
scrutiny. Shuffled corpora are collections of natural language texts that have
been randomized for preserving word frequencies but not ordering relations be-
tween short sequences of words. [24] show that language models pre-trained on
shuffled corpora exhibit similar fine-tuned performance to language models pre-
trained on normal texts. They conclude that fine-tuned probes are too weak;
instead, we believe fine-tuned probes should be replaced by zero-shot measure-
ment. Zero-shot measurement is a method by which a language model is tested
on some task without any additional training beyond its language modeling
objective. In contrast, fine-tuning typically involves adjusting the weights of a
language model through training on a sample of data from the task the model
is being evaluated on, often with the addition of an output layer corresponding
to the task’s objective.

A recent industry white paper makes it clear why even few-shot measurement
of language models ought to be avoided: “ Our decision to use zero-shot learning
was driven by its simplicity and deterministic behavior, which does not depend
on the selection of examples shown during few-shot learning.”6

Few-shot learning involves choosing some example or examples to pair test
examples with when measuring the model, a decision with considerable com-
binatorial latitude. Fine-tuning involves not only using hundreds or thousands
of training examples, but also hyperparameters that can be manipulated for as
many GPU hours as are available. For this reason, some authors of benchmarks
for common sense post warnings on research ethics along with their datasets.
Here is an example:

4. Research ethics

In providing both the development and test sets, we are relying on
competitors to exercise ethical research practices.

Researchers should not study the 500 questions in the COPA test set,
and avoid any temptation to alter their systems toward the content
of this particular set of questions. Researchers should evaluate the
performance of their systems on the COPA test set only once, after
they have concluded all of their efforts to improve perfomance on the

5https://www.fast.ai/2021/07/19/copilot/
6White paper linked from https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1
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COPA development set. Findings of unethical research practices can
ruin your career, so obey the rules.7

Therefore we believe that because GPT-3 is demonstrably inferior to much
smaller language models for common sense as expressed through zero-shot mea-
surement, pair coding AI may not bode well for it in its current state.

3 The paths forward

In this section we advocate for our preferred methods for AI-supported coding
and for language model assessment in support of building systems that possess
natural language understanding.

3.1 Retrieval-based approaches

Shortly after the innovation of deep learning-based approaches such as Long
Short-Term Memory, the attention mechanism, and the Transformer archi-
tecture, significant improvements on a variety of natural language processing
tasks were accomplished. On the other hand, as discussed previously, these
approaches were accompanied by a variety of issues, interpretability being the
major concern in our case. In light of this, a number of dense retrieval-based
methods for common sense, that either augment deep learning models or re-
place them altogether, have been recently proposed and appear more modular
as well as interpretable. Consider a pre-transformer system that automatically
retrieves snippets from search engines resembling a sample test instance and
uses it to reason on-the-fly about the solution to common sense problems (The
Knowledge Hunter; [25]).

More recently, language model pre-training was augmented with a latent
knowledge retriever, allowing the model to retrieve and attend over documents
from a large corpus such as Wikipedia and was demonstrated to be both superior
in performance to conventional black-box language models as well providing
qualitative benefits such as interpretability and modularity [26]. Based on a
very similar idea, an open-source chatbot, dubbed Blender Bot 2.0, combines
an information retrieval component with a deep learning based generator, and
seeks relevant information both in its long-term memory and from documents
it finds by searching the internet to generate high quality, as well as up-to-date
responses [27].

These retrieval-based methods suggest an important research direction for
Copilot, that promises both improvements in performance, but more impor-
tantly, in terms of the long-term benefit and edification of the user. Specifically,
just as is the natural inclination for a user, prior to Copilot, is to search up a
solution related to their problem and retrieve both a sample solution, as well
as a context and explanation, retrieval-augmented approaches could potentially
offer the same benefits. Although not as “convenient” as simply relying on a

7https://people.ict.usc.edu/ gordon/copa.html
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quick code continuation, this latter mechanism would commit more closely to
the purpose of pair programming; it likely results in the user learning far more
about the problem and the possible space of solutions. Incidentally, Microsoft
has created a related but lesser-known product called “API Usage Examples”8

that looks for examples online of people using the API or library that the user
is working with, and provides examples of real code and its use-case, along with
links to the source of the example. Its relation to Copilot shadows that between
the mentioned retrieval based-methods and their purely black-box counterparts,
towards which we are more enthusiastic.

3.2 Zero-shot language model assessment

A technique recently developed twice [28], [29] leverages a phenomenon that
may be familiar to an educator trying to help a student while maintaining fair-
ness in an exam setting. Suppose there is some arbitrary instruction: ‘Describe
Fodor and Pylyshyn’s argument that connectionist systems cannot explain hu-
man natural language ability.’ A student asks ‘Could you help me? I don’t
understand this question’.

Suppose you repeat the question to the student, but emphasizing a differ-
ent word each time: “Describe Fodor and Pylyshyn’s argument. . . ”; “Describe
Fodor and Pylyshyn’s argument. . . ”; “Describe Fodor and Pylyshyn’s argu-
ment. . . ” and so on. Arguably, you haven’t given the student any information
not available to the other students in the classroom who might not be able to
hear the conversation. But might the repeated reflection help the student?

In the [28] context, transformer architectures were applied to the problem of
scoring sequences according to hypotheses in the context of speech recognition,
neural machine translation, and linguistic acceptability. Strangely, despite the
approach being a natural fit for common sense tasks, the authors do not apply
their pseudo-log likelihood approach to that problem.

That paper has a nice diagram of the concept of the PLL; rather than repro-
duce it let us first explain via example from a widely influential common sense
database. ‘Winograd schemas’ are pairs of sentences that, by differing in a sin-
gle word (a semantic change) change the reference of a word in that sentence.9

Suppose a masked language model is considering the Winograd sentences F1:
‘Frank was upset with Tom because the toaster Frank had bought from him
didn’t work’ and F2: ‘Frank was upset with Tom because the toaster Tom had
bought from him didn’t work.’ Since masked language models are built to pro-
vide the likelihood of a word given a context – optimizing for this is a standard
objective function for training them – there is an obvious way to do this.

To score the pair for BERT, simply choose the sentence for which the like-
lihood of the differing word, when masked, is higher: compare the likelihood of
the tokens ‘Frank’ and ‘Tom’ for the masked language models’ forward pass on

8https://marketplace.visualstudio.com/items?itemName=VisualStudioExptTeam.vscodeintellicode-
insiders

9Terry Winograd first presents this idea in section 1.6.5 of [30]. An influential collection
of similar examples is presented by [31].
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the sentence ‘Frank was upset with Tom because the toaster MASK had bought
from him didn’t work’.

Pseudo-log likelihoods, instead, are the result of a forward pass for every
word in the sentence. To compare F1 and F2, we iteratively mask each word
in the sentences, take the log of the likelihood of the masked word given the
sentence, and then sum. The log has the nice property of magnifying differences
between scores. For F1 this would involve summing the log likelihood of ‘Frank’
in ‘MASK was upset with Tom because. . . ’ with the log likelihood of ‘was’ in
‘Frank MASK upset with Tom because. . . ’, and so on, for every word in the
sentence. Note the similarity to helping the student by emphasizing each word,
in turn.

Masked language models provide a likelihood of word given context, and
for two sentences that differ in a single word, difference in likelihood seems to
be amplified when we measure all possible words given context, not just the
word that differs given context. As we show in the next section, the dramatic
magnifying effect of PLLs suggest that not only the regime of fine-tuning, but
also non-bidirectional language models, are being eclipsed in the domain of
common sense.

The authors of [28] produce dramatic improvements over existing approaches
with their methods, and point out that the method strongly favours bidirec-
tional language models over unidirectional (‘causal’) models (see their ‘Win-
ston Churchill’ example, and discussion in the conclusion). It is important to
note that Codex/Copilot is built on the early technological decision to train
hundreds of thousands of hours of GPU time on a unidirectional model, and
OpenAI/Microsoft have every right to try to capitalize on their investment.
However, if common sense is a pre-requisite to thoughtful, verbal interaction
with human beings, then Codex/Copilot is a sunk-cost fallacy reified into a
product.

3.3 Recent results on common sense

In this section we summarize some recent and forthcoming results building first
on the work of [28] and also [29]. The authors of [28] license their code under an
Apache license and state in their abstract that they intend for their contribu-
tion to “enable plug-and-play use of the growing number of pretrained MLMs”.
Given the naturalness of their techniques for common sense language tasks,
we have applied them to a number of public datasets using a variety of public
language models. The superiority of albert-xxlarge-v210 became apparent
quickly in our experimentation.

In [32] we compare the performance of RoBERTa [33] and AlBERT [34] lan-
guage models using PLLs on the Winograd data set [31] and a much larger,
crowd-sourced data set with similar form: the Winogrande data set, train-xl
split [35]. The BERT variant PLLs for Winogrande score strictly better on
the Winogrande data split than reported zero-shot GPT-3 results [1]. GPT-

10https://huggingface.co/albert-xxlarge-v2
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3 reports higher zero-shot values than our otherwise state-of-the-art zero-shot
results for Winograd, but explicitly state that there is cross-contamination be-
tween the Winograd examples and their very large, web-crawled pre-training
corpus. Our best results using the albert-xxlarge-v2 with PLLs are 81.05%
for the Winograd data set and 76.71 for the Winogrande data set.

We also investigate the performance of PLLs with bidirectional languge mod-
els in [32] on adversarially ‘perturbed’ variations of the Winograd data set [36].
We find that PLLs improve on other scoring methods both for accuracy aver-
aged across all perturbed data sets, but also ‘accuracy delta’, ∆Acc.: the aver-
age change in accuracy when Winograd schemas are systematically perturbed.
albert-xxlarge-v2 did not score the lowest ∆Acc. (-4.54) but did show the
highest average accuracy across all perturbed Winograd data sets: 79.64%

In [37] we show that across every model we measured, natural language
model performance using PLLs was better on Winograd than on Winogrande.
We suspect that this might be because of the poorer quality of crowdsourced
data for common sense; work in progress attempts to answer this question with
human subjects. There is uncertainty in both the methodologies used by the
research community to assess language model performance on common sense
and also the data sets to which we apply those methods. It is difficult to
imagine progress on the associated open research questions without free access
to models, unavailable for both Copilot and Codex.

It came to our attention recently that a second group of researchers indepen-
dently discovered the utility of pseudo-log likelihoods; in this case, they were
applied explicitly to zero-shot benchmarking on a number of popular common
sense results [29]. That paper’s authors have independently published a freely
available repository for computing PLLs.11 By taking the trivial step of modify-
ing their code to use albert-xxlarge-v2 we produced results that were better
on most (but not all) measures than their approach.

Practical considerations are significant when building on the work of others.
The advantage of the first paper/repository we became aware of for PLLs ([28])
is that the code scales automatically to multiple GPUs if available, dramatically
improving the speed to compute them. A recent publication cites the computa-
tional cost of PLLs as a reason to limit their use only to ‘base’ sized models [38].
Our own ability to report results using albert-xxlarge-v2 is due to the avail-
ability of national, public supercomputing resources available to researchers in
the country we work in. The [29] formulation has the advantage of being much
more readable and compact code, but does not automatically scale to multiple
GPUs.

Finally, consider the ‘Timedial’ dataset, which we first heard about via blog
post at Google AI.12 With [37] we provide a script which, using mlm-scoring
[28], produces a .csv of sentence scoring for substitutions. The top-2 accuracy
is over 75% with masked PLLS from albert-xxlarge-v2, exceeding the best
fine-tuned accuracy score reported in [39]. Free software can, we hope, produce

11https://github.com/XuhuiZhou/CATS
12https://ai.googleblog.com/2021/08/two-new-datasets-for-conversational-nlp.html
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language models that understand enough human common sense to be useful
partners for programming and other tasks.

4 Conclusion

The last decade has seen considerable advances in natural language process-
ing using machine learning. By hiding the GPT-3 model behind an API wall,
and building a commercial service on top of it that hides its underlying func-
tioning, OpenAI has demonstrably chosen a path for innovation that is slower
and technologically poorer than free and open alternatives. We target the reader
who erroneously believes that innovation in natural language understanding can
only come from ever-larger language models pre-trained using quantities of data
and compute unavailable to individual researchers. Instead, free software has
produced advances through smaller language models and methods that can be
scrutinized and improved by anyone with a stake in their success. Well-known
ethical advantages of free software systems and the scrutiny they permit produce
scientific value also, in distributed innovation representing the diverse values of
AI practitioners.
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